• Technical Notes
  • Introduction
  • 1. Open Tech Challenges
  • 2. For Backend Programmers
    • 2.1. Coding Principles
    • 2.2. Design Patterns
    • 2.3. Restful API Design
    • 2.4. Entity Modeling
    • 2.5. Profiling
    • 2.6. Memory Management
    • 2.7. Java NIO
    • 2.8. IO Architecture
    • 2.9. Concurrent Programming
    • 2.10. Functional Programming
    • 2.11. Microservice
    • 2.12. Web Security
    • 2.13. Git Flow
    • 2.14. Quick Prototyping
    • 2.15. Interview Questions
    • 2.16. Valuable Experience Learnt
  • 3. Machine Learning
    • 3.1. Neural Network
    • 3.2. Deep Learning - Part 1
    • 3.3. Deep Learning - Part 2
    • 3.4. Data Aggregation
    • 3.5. Data Processing
    • 3.6. Regression
    • 3.7. Decision Tree
    • 3.8. SVM
    • 3.9. Bayesian Network
    • 3.10. Random Forest
    • 3.11. Machine Learning at Scale
  • 4. Data Structure/ Algorithm
    • 4.1. Recursion
    • 4.2. Algorithm
    • 4.3. B Tree vs B+ Tree Index
    • 4.4. Trie
    • 4.5. Graph
  • 5. Big Data Processing
    • 5.1. Scalable Design
    • 5.2. Locality Sensitivity Hashing
    • 5.3. Data Mining Lecture
    • 5.4. Consistent Hashing
    • 5.5. Consensus Algorithms
    • 5.6. Vert.x
    • 5.7. Redis
    • 5.8. Storm
    • 5.9. Kafka
    • 5.10. Hadoop
    • 5.11. Cascading
    • 5.12. Hive
    • 5.13. Spark
  • 6. Search
    • 6.1. Logstash
    • 6.2. ElasticSearch Videos
    • 6.3. What Makes ElasticSearch So Fast
    • 6.4. ElasticSearch In Production
    • 6.5. ElasticSearch In AWS
    • 6.6. ElasticSearch Cluster Management
    • 6.7. ElasticSearch & JVM
    • 6.8. ElasticSearch on Cloud
    • 6.9. ElasticSearch - Modeling
    • 6.10. ElasticSearch vs Algolia
    • 6.11. ElasticSearch - Spatial Search
    • 6.12. ElasticSearch Cheatsheet
    • 6.13. Lucene 5 - What is news?
    • 6.14. Use Case: Github
    • 6.15. Use Case: OpenDNS
    • 6.16. Use Case: Loggly
    • 6.17. Use Case: LinkedIn Search Architecture on Lucene
  • 7. DevOps
    • 7.1. Virtualization
    • 7.2. Network Security
    • 7.3. Tools
    • 7.4. Log Processing
    • 7.5. Cloud Computing
    • 7.6. System Tuning
  • 8. Ad Tech
    • 8.1. Header Bidding
  • 9. Cheatsheets
    • 9.1. Linux Commands
    • 9.2. Markdown
    • 9.3. Wordpress
    • 9.4. MySQL
    • 9.5. Math: Probability
    • 9.6. Math: Linear Algebra
    • 9.7. Tools
Powered by GitBook

Technical Notes

Data Mining

Reference

  • http://infolab.stanford.edu/~ullman/mmds/ch9.pdf